

APPENDIX 4: TYPE VERIFICATION TEST REPORT

SSEG Type reference number		StecaGri StecaGri	StecaGrid 1500 / StecaGrid 1800 / StecaGrid 2000 / StecaGrid 2300 / StecaGrid 2500 / StecaGrid 3010 / StecaGrid 3600					
						0x / StecaGrid 2000x / 0x / StecaGrid 3010x /		
CCCC Tumo			StecaGri PV inver	d 3600x		_		
SSEG Type								
Manufacturer			Steca El	ektronik GmbH				
Address:				Mammostrasse 1				
			87700 Memmingen Germany					
Tel	+49	8331 8558-833		Fax		+49 8331 8558-132		
e-mail		ine@stecasolar.c ce@stecasolar.c		Web site		www.steca.com		
Maximum rated capacity	I	1.5 / 1.8 / 2.0 /	2.3 / 2.5 /	3.0 / 3.0 / 3.6	kW si	ingle phase		
SSEG manufacti	urer d	eclaration:						
Generators, tha number will be Verification Test	t all p manu t Repo	roducts manufa factured and tes	ctured by sted to en ment to si	the company with sure that they per te and that no sit	n the a form a	Small Scale Embedded bove SSEG Type reference is stated in this Type fications are required to		
Signed 26 08 13	,			On behalf of	1	. Ralf Griepentrog d of R&D		

Pfad \ Datei:

	uality. Harn			1,147			
	G rating per ph			kW	NV = MV * 3.68 / rpp		
Harmonic -		of rated output		rated output			
	Measured Value (MV) in Amps	Normalized Value (NV) in Amps	Measured Value (MV) in Amps	Normalized Value (NV) in Amps	Limits in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.0062	0.0125	0.0109	0.0218	1.080		
3	0.2644	0.5288	0.0437	0.0874	2.300		
4	0.0023	0.0047	0.0062	0.0125	0.430		
5	0.2215	0.4430	0.0608	0.1217	1.140		
6	0.0016	0.0031	0.0047	0.0094	0.300		
7	0.0889	0.1778	0.0078	0.0156	0.770		
8	0.0008	0.0016	0.0031	0.0062	0.230		
9	0.0889	0.1778	0.0351	0.0702	0.400		
10	0.0008	0.0016	0.0023	0.0047	0.184		
11	0.0273	0.0546	0.0086	0.0172	0.330		
12	0.0008	0.0016	0.0016	0.0031	0.153		
13	0.0374	0.0749	0.0265	0.0530	0.210		
14	0.0008	0.0016	0.0008	0.0016	0.131		
15	0.0140	0.0281	0.0094	0.0187	0.150		
16	0.0008	0.0016	0.0008	0.0016	0.115		
17	0.0218	0.0437	0.0187	0.0374	0.132		
18	0.0008	0.0016	0.0016	0.0031	0.102		
19	0.0055	0.0109	0.0133	0.0265	0.118		
20	0.0008	0.0016	0.0016	0.0031	0.092		
21	0.0047	0.0094	0.0148	0.0296	0.107	0.160	
22	0.0008	0.0016	0.0016	0.0031	0.084		
23	0.0094	0.0187	0.0125	0.0250	0.098	0.147	
24	0.0008	0.0016	0.0016	0.0031	0.077		
25	0.0062	0.0125	0.0109	0.0218	0.090	0.135	
26	0.0008	0.0016	0.0016	0.0031	0.071		
27	0.0047	0.0094	0.0140	0.0281	0.083	0.124	
28	0.0008	0.0016	0.0008	0.0016	0.066		
29	0.0062	0.0125	0.0109	0.0218	0.078	0.17	
30	0.0008	0.0016	0.0008	0.0016	0.061		

31	0.0070	0.0140	0.0125	0.0250	0.073	0.109
32	0.0008	0.0016	0.0008	0.0016	0.058	
33	0.0016	0.0031	0.0109	0.0218	0.068	0.102
34	0.0008	0.0016	0.0008	0.0016	0.054	
35	0.0094	0.0187	0.0133	0.0265	0.064	0.096
36	0.0008	0.0016	0.0008	0.0016	0.051	
37	0.0156	0.0312	0.0125	0.0250	0.061	0.091
38	0.0008	0.0016	0.0008	0.0016	0.048	
39	0.0117	0.0234	0.0133	0.0265	0.058	0.087
40	0.0008	0.0016	0.0008	0.0016	0.046	

Measured by

Bureau Veritas CPS Germany GmbH Businesspark A96

86842 Tuerkheim

Germany

with StecaGrid 1800

Power Qual	ity. Vol	tage Flu	ctuation	s and Fli	icker				
	Starting				Stopping			Running	
	d _{max}	d _c	d _(t)	d _{max}	d _c	d _(t)	P _{st}	P _{it} 2 hours	
Measured Values	3.7	2.9	0.02	3.7	2.9	0.02	0.385	0.385	
Normalised to standard impedance and 3.68kW for multiple units									
Limits set under BS EN 61000-3-2	4%	3.3%	3.3% 500ms	4%	3.3%	3.3% 500ms	1.0	0.65	
Test start	12	th of Feb.2	2014	Test end	1		2 th of Feb.20	14	
date				date					
Test location	Bureau Veritas CPS Germany Businesspark A96 86842 Tuerkheim Germany			GmbH					

Power Qualit	ty. DC inje	ection	
Test power level	10%	55%	100%
Recorded value	17mA	10mA	18mA
as % of rated AC current	0.21%	0.13%	0.23%
Limit	0.25%	0.25%	0.25%
Measured with Stec	aGrid 1800		

Power Qua	lity. Power	factor		
	216.4V	230V	253V	Measured at three voltage levels and at full output. Voltage to be maintained within
Measured value	<0.99	<0.99	<0.99	±1.5% of the stated level during the test.
Limit	>0.95	>0.95	>0.95	

Protection	. Frequency	/ tests				
Function	Settings		Trip test	Trip test		
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip
U/F stage 1	47.5Hz	20s	47,46 Hz	20,3 s	47.7Hz 25s	confirm
U/F stage 2	47hz	0.5s	46,94 Hz	0,8 s	47.2Hz 19.98s	confirm
					46.8Hz 0.48s	confirm
O/F stage 1	51.5Hz	90s	51,56 Hz	90,3 s	51.3Hz 95s	confirm
O/F stage 2	52Hz	0.5s	52,08 Hz	0,78 s	51.8Hz 89.98s	confirm
					52.2Hz 0.48s	confirm

Protection	. Voltage 1	tests				
Function	Settings		Trip test	Trip test		ts"
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip
U/V stage 1	200.1V	2.5s	199,8V	2,7s	204.1V 3.5s	confirm
U/V stage 2	184V	0.5s	182,7V	0,7s	188 2.48s	confirm
					180V 0.48s	confirm
O/V stage 1	262.2V	1.0s	264,7V	1,2s	258.2V 2.0s	confirm
O/V stage 2	273.3V	0.5s	275,7V	0,7s	269.7V 0.98s	confirm
					277.7V 0.48s	confirm

Protection. Lo	ss of Main	s test		· · ·	·	
To be carried out	at three power	er levels with a	tolerance of	plus or minus	5% in Test Por	wer levels
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG
network	output	output	output	output	output	output
Trip time. Limit	N/A	N/A	N/A	N/A	N/A	N/A
is 0.5 seconds	'					
For multi phase S	SEG s confirm	that the devi	ce shuts down	correctly afte	r the removal	of a single
fuse as well as op				-		
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG
network	output	output	output	output	output	output
Trip time. Ph1	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG
network	output	output	output	output	output	output _
Trip time. Ph2	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG
network	output	output	output	output	output	output
Trip time. Ph3	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Note for technology	gies which h	eve a substant	ial shut down	time this can	be added to th	ne 0.5
seconds in establ	ishing that th	e trip occurred	l in less than 0).5s. Maximum	shut down ti	me could
therefore be up t						
Indicate addition	al shut down	time included	in above resul	ts	<u> </u>	ms
Note as an altern	ative, inverter	s can be teste	d to BS EN 62	116. The follov	ving sub sets (of tests
should be record	ed in the follo	wing table				
Time Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% Q	+5% Q	+5% Q	+5% Q
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit	0.71s	0.96s	0.81s	0.975	0.82s	0.86s
is 0.5 seconds		<u> </u>			<u> </u>	

Protection. Frequence	y change, S	tability test		
	Start	Change	End	Confirm no trip
	Frequency		Frequency	
Positive Vector Shift	49.5Hz	+9 degrees		confirm
Negative Vector Shift	50.5Hz	-9 degrees		confirm
Positive Frequency drift	49.5Hz	+0.19Hz/s	51.5Hz	confirm
Negative Frequency drift	50.5Hz	-0.19Hz/s	47.5Hz	confirm

	. Re-connect					
Test should p	rove that the re	econnection sec	quence starts a	fter a minimum	n delay 20 seco	nds for
restoration of	f voltage and fr	equency to wit	hin the stage 1	settings of tak	ole 1	
Time delay	Measured		Check on no	reconnection w	hen the voltag	e or
setting	delay		frequency is k	prought to outs	ide stage 1 lim	its of table 1
			At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz
Confirm that the SSEG does not re- confirm confirm confirm confirm						
connect						

Fault level contributi	on		_	_	
For a directly coupled SSEC		For an Inverter	SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	İp	N/A	20ms	79,15	16,65
Initial Value of aperiodic current	Α	N/A	100ms	73,03	10,54
Initial symmetrical short- circuit current	l _k	N/A	250m	72,78	9,48
Decaying (aperiodic) component of a short circuit current	İ _{DC}	N/A	500m	72,77	9,40
Reactance/Resistance Ratio of source	X/R	N/A	Time to trip	0,757	In seconds

Measured by Bureau Veritas CPS Germany GmbH Businesspark A96 86842 Tuerkheim

Germany

Self-monitoring solid state switching	Yes or N/A
It has been verified that in the event of the solid state switching device failing	N/A
to disconnect the SSEG, the voltage on the output side of the switching	
device is reduced to a value below 50 volts within 0.5 seconds.	

Additional comments

Unless otherwise noted all testing were done in the laboratories of the manufacturer and with the StecaGrid 3600, which is regarded either as representative or as worst case.